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Abstract

The problem of nonparametric estimation of a bivariate survivorship
function with doubly censored data is considered. A self-consistent esti-
mator is developed by firséd“reducing"ythe problem to that of estimation in
a singly and right censored situation . This estimator is shown to satis-
fy a likelihood equation, and its uniqueness is investigated. The results

obtained naturally parallel those obtained by—eampbe&i-{i9592\in the sing-

ly censored case\
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Nonparametric Estimation of a Bivariate
Survivorship Function with Doubly

Censored Data

1. Introduction and summary. In this article we consider the nonpara-

metric estimation of a bivariate survivorship function when data may be
both left and right censored. Specifically, let (le,sz), TR RS Tis
be n pairs of true lifeléngths where some of the Tij's are left cen-
sored and some right censored. Thus, not all (le,sz) are exactly
observable. For each j (1< j < n) and for i = 1,2 , we assume that
there are limits of observation Lij and Uij(Lij 5_Uij) which are

either random variables independent of each other and (le,sz) or are

fixed constants. The recorded information is

Xij = max[m1n(Tij,Uij), Lij]’ el P = Al eo Lo

Also, for each j =1,...,n and i = 1,2, it is known whether Xij = Lij

(i.e. T.,.<L.. and T.. is left censored or a '"'late entry'), or
Aysaaj 1)
= s 3 3 " "

Xij Uij (i.e. Tij > Uij and Tij is right censored or a '"loss"),
or X:. =T.,. (d.€6s Lia €T, <U.. and T,. 48 a '"'death").

1] 1] 1] ij = i3 ij

Recently Campbell (1979) considered the problem when observations are
randomly and right censored. He developed a ''self-consistent" (SC) non-
parametric estimator and showed, among other things, that the SC satisfied
a nonparametric likelihood equation and was unique up to the final censored
values in any dimension. A similar SC estimator was developed and studied

by Korwar and Dahiya (1979). Here we extend Campbell's results to the

This research was supgorted by a _research contract from the U

S. Air Force
Office of Scientific Research, AFOSR, under Contract #F49620-79-C-0105

C-0105.
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situation of doubly censored data. Earlier, Turnbull (1974) considered
the univariate situation, and used an ingenious approach to ''reduce' the
doubly censored situation to the right censored one for which the Kaplan-
Meir (KL) (1958) estimator was readily applicable. In extending Campbell's
results here we use the very same approach of Turnbull, though modified,
of '"reducing" the doubly censored situation to that of the right and singly
censored one.

Assume, then, that there is, for each component of the bivariate variable,
a natural discrete time tiO =0 < til - timi’ i =1,2. (This is an
appropriate assumption to make if observations are made only at discrete
times.) Alternatively, we might assume that they are grouped and for each

rectangle (t we have the following information

- Egd % gy getpyd

available:
Gij = # of pairs (le’Tzk) such that tyi< Tyy 5-t1,i
" "y .

and t2j-1 < T2k 5-t2j (""double deaths");

aij = # of pairs (le’TZR) such that le > Tli and
L Tox £ %23 ("loss in the first component and death
in the second");

Bij = # of pairs (le’Tzk) such that tli-l < le E-tli
and T2k > th (""death in the first component and loss

in the second");

Aij = # of pairs (le’TZk) such that le > tli and TZk > th

(""double losses');

<t and T

u.. = # of pairs (le'TZR) such that T li

Sty
ij - t2

1k J

2k

("double late entries'");

1---------------IIIIlllllllllllali‘



2 :
s - Sl S0
ulj of pairs (le'TZk) such that le t11 and TZk 5-t2j
("loss in the first component and late entry for the second');
3 ’
s, = #
ulJ of pairs (le’TZk) such that le f-tli and TZk > t2j
(""late entry for the first component and loss in the second');
4 3
= #
uij of pairs (le’Tzk) such that tli—l < le f-tli and
T2k f-th ("death in the first component and late entry in !
the second'"); and g
5 .
= #
uij of pairs (le’TZk) such that le f-tli and

Y imity

and death in the second").

("late entry for the first component

As in Turnbull (1974), we assume that each of the late entries ugj or
uij,(ufj, or “gj) in the first (second) component occurs at the end of

the interval (tli_l,tli]((tzj_l,tzj]); that each of the double late

entries uij (double losses li 1, 1) occurs at the right hand top (left
P
hand botton) corner of the rectangle (tli-l’tli] X (th—l’th]' Finally,
2 3
we also assume that each of the uij or uij (Bij or uij) losses

in the first (second) component occurs at the beginning of the interval

t
(50 231
we do not pursue here.

tli] ((t ’t2j])' Alternative assumptions are also possible which

We desire to estimate Fij = P[T1 > tli’TZ > th]’ is= 0,...,m1,

g - 0,...,m2 ‘
2. The Self-consistent estimator. We first reduce the problem to that in

which there is only right censoring. To this end, consider first the u;i

double late entries at (tli,tzj). Of these, the expected number of double




deaths in the rectangle@l’iLl,tliJ x(tZ,j'-l’th']’ for 1' <1, §' <,
1 1 1 ; A

i3 kij’ where kij is an estimate of

< T

ity ST S tyety iy STy Sl Ty STy < t)] = 85000/ 050

is estimated by p

Pt

where Ai’j' = Fi'-l,j'-l - Fi'-l,j' - Fi',j'—l + Fi',j" pij =1 - FO,j

- F. A RNERT T e SRR
ij 1

i,0 i li’TZ > tzj) . Similarly, of the

uij(uij) Single late entries, the expected number of double deaths in the
: : CEE S R
rectangle (tl,i-l’tli] X (tz,j'—l’th'] is estimated by uij kij(uij kij)
5 : :
ij) is an estimate of P[tli-l < T1 5-tli’t2j'-1 < T2 5-t2,j'

|ty STty T 2%50 = 850/ Ryp - Ry Ly

where k?.(k
1)

|

<l .

5 it e e S ] i

il 25 tzj | 1> tli,tz,j_l Ry % tzj] = Aij/(QOj & Qij)), where Aij'(Ai,j) 1

is defined above and Rij = Fi-l,j - Fij(Qij = Fij—l - Fij). Of the
u§'(”§j) single late entries, the expected number of deaths in the rectangle

1]
2 2 3 2
(tl,i'—l’tli'] X (tj,w) is estimated by ”1Jk13(“13 13) where kij(kij

is an estimate of P[tli' 5 T1 <ty T2 > tj |T1 Sty T2 >t

Riv 5/ (Fo 5 = Fi 30 (PITy > triutyse g < Ty St ] T > ey,

Qij,/(Fi i Fi j)). Now, consider the '"reduced" singly, right censored

problem with

R IR, SR, g+ T W

i'>] >4 13 lJl(Qo i &

13

).

(2.1)

; 2 A ~ ~ 3 A A
'o= o . I TSR R A T R.. Poe = Bosadi's
g Sl - e j§>j Mesr Qu3/ Fy g = Fy g0 Bl = Byy §>1“ 13 Rig/Foy = Fing)
' = S
g. e .
where the caret over a probability denotes an estimate of the




corresponding probability. From Campbell (1979) a nonparametric estimator

F'J of Fi,j = P[T1 > tli’TZ > tzj] satisfies the self-consistency equation

2] Q' ﬁ'
IR R ., 5 B ~$l
. ) 2>j Qkk k>i ﬁkg
k<i <5

A

'
.5 Al Fmax(i,k)!max(i,l) A
k<i Kk F!

or £<j ki

___ ' ' 1
K9-8 Mg ™ 200 = 28y ¢ TRE 4B, &
K>i,055 k1,05 ki8] k>, L] |

Following Efron (1967) we say that the estimates {Fij} are self-consistent if

F;J = ﬁij . Thus the self-consistent estimates ?i. satisfy :
- Gy ﬁ : £ ), max (i, %) i
(2.3) B =N+ D oo e §ogy K g A, —22x(k) max(,
i e TaE e TR Frg
k<i 2<j or 2<j

where (ukl’ Bkl’ 6k2’ kﬂ) and N. i3

and where Q 13 =F

are given by (2.1) and (2.2) respectively, {
i,1-1 - Fyy omd Ry = Fy - Fp,

An obvious iterative procedure to compute the F.j's is as follows:

(1) Start with the empirical distribution function {ﬁg.} ¥ ﬁ?. = Nij/n §

as the initial estimators.

; : 20
1 1 ] )
(2) Form 6ij’aij’sij and Aij’ as described above, using {Fij}

(3) Obtain improved estimates {ﬁg;} by using

30 20
F = ! _.l_g.'_ ._EJ_
Wey " Ny * zEj oY) 30 ¢ kzl Bxe 20
— KL B g K
o Thax(i,K),max(ig) .
*I A 20
k<i Fs
Aw 074




(4) Go to step (2) with {Fij} in place of {Egj} etc.

(5) Stop when the requirements on the accuracy are met. Convergence could

be faster if we started with the Campbell estimates {F } satisfying (2.3)

without the dashes.

3. Properties of the SC estimator. In this section we state and prove

some important properties of the self-consistent estimates {F } (2.3).

These properties naturally parallel properties for Campbell's (1979) estimates

for the right censoring only situation.

The likelihood function L is

ml,m2 s ) 1 2 3 4

(3.1) L= a4 Qi3 R e 1J(F )pij(F - B,y Ug, ) 13
3 i=T,j=1 13 1J "ij "ij Pij 13 0,j ij 10745
5

T
. < 1]
and the likelihood equation obtained by partially differentiating fnL with
respect to Fij and setting it to zero is

94nL _ Eii__ Giij+1_ 6i+1,j . 61+1 ,j+1 ._dl __l 2 % iis1 E_L
ab A

SR A T T VR T T i Rij
1 2 3 4 4 5
+ Pl g s :ij g “ig s “ig i ui+lij grrillyy
Ly 5wy Pt Rty Neos e,  Q5°Y;
5
Mije1 xS
i -Q. 2 :
0,j+1 “i,j+1
1 4
&L _ 41 " 51+1,1 $ gil : Ell b u13 x u13 u1+1,J =0
o, A A g Fool: "R R ,
0 il 1#];1 il ij 1013 0 'ij i+1,0 “i+l,j
8.2) . 1 3 5 5
aenk . S1j S19e  Buy iy oowy et il g
aF0 AIJ A1,J+1 le le Oj— ij QOJ;QIJ 0,+1 i.i41




We are now ready to prove

Theorem 1: Any self-consistent solution {ﬁij} of (2.3) will also
satisfy the likelihood equation (3.2) with (ﬁij’aij’ﬁi’) in place of

J

Proof: Recast, using (2.1), the likelihood equation (3.2).

easily seen to be

1 ' 1 1
TR e i
L B s B

' A
o
A

i+1,1 i1

+

1
neal +1 .

B34

The rest follows from Theorem 2 of Campbell (1979). 0O

Turning to the existence and uniqueness of a solution of (2.3), one

might ask whether there exists at all a solution {Fij} of 2.3 and if

so is it unique? The difficulties are similar to those encountered in the
singly and right censored case. For a discussion and a conjecture about
existence, see Campbell (1979). The following theorem is aimed at the
uniqueness question:

2
9- nL }

Theorem 2: The matrix {- z=—==—} 1is nonnegative definite.
—— apijapkl

Proof: Write the likelihood (3.1) as




2 3 4 5

u}. ThiE Tl
2 j 1J 13 ij Q ij
(3.3) L, 1113- Pi;” (Fi07F33) ™" (Fos-Fis) " (RypRyp) 7 (Qp5-Qy5)
Now, Campbell (1979) has shown (his Th h { T—g——am }
: ow, Campbe as shown (his Theorem 3) that the matrix {-

Bzﬂ.nL k9,

i1s non-negative definite. Thus it suffices to show that {- W}

also is. From (3.3) and the definitions of pij’ Qij and Rij’ letting

2
9 4nL2 :

SRR ... 1P " T , we find that
3"153% (ij) (k2) b o

1+m?.+m:.”.+m4 +m4 +5

Mg "M TN T TR SR M

* 5 e 14 :
M s N e oM =0 if |i-k|+|j-2]>2,
(1) (i-1,3j) mlJ (i3) (1,3-1) ml] (ij) (k) if [i-k|+]j '_
150 ik live i@ sl e i S )
Ma 1,0 T My Mo T T "M, 500 Mgy (1,00 T M,

S 5 5 .
Mai o i-n = M5 Mapon T (m "M M55M 5410 Meigy 0,5+ = My, 5417

=0 if |i-k| > 2, = 0. AE {i-bl 22 in

Mei) (ko) Meis) o0

JUL S s K g
Meo3) o) = ™i5* ™5™, 5410 Mooy 0,5-1) T 7 My

1

Mosy(ioy = Mijr Meojycony = 0 i %3122

m1 +m2 e

- 4 . § :
M0y (o) = ™i3*™i5" M5 e, 50 Mi0) (i-1,0) 0 if [k-i] >2

4
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UGN S SN Tl 2
mij i Uij/pij, mij e uij/(FiO = Fij) » M

3
ij

T 2

g 20 B

2

Note that M(as well as the matrices to follow) is mXm, where m = mm, +m +m,

Now decompose M as follows: Let Aij be the matrix with 1's at (0j)(0j),

(03) 30), (i0)(0j), (i0)(i0), (ij)(ij), - 1's at (0j)(ij),(i0)(ij),(ij)(i0),

and 0O's everywhere else. Let Afj be the matrix with 1's at (i0)(i0),

(ij) (ij), ~-1's at (i0)(ij), (ij)(i0) and O0's everywhere else. Let A?j
be the Matrix with 1's at (0j)(0j), (ii)(i3), - 1's at (0j)(ij), (ij,0j),

and 0's everywhere else. Let Aij be the matrix with 1's at (0,j-1)(0,j-1),

(0,3-1)(ij), (0j)((0j),(0j) (1,3-1), (i,j-1)(0j), (i,j-1)(i,j-1), (0,j-1)(ij),
(ij) i3, -1's at (0,j-1)(0j), (0,j-1)(i,j-1),(0j)(0,j-1), (0,j)(ij),
(i,3-1)(0,j-1), (i,3-1)(@3), (ij)(0j), (1j)(i,j-1), and 0's everywhere else.
Finally, let Aﬁj be the matrix with 1's at (i-1,0)(i-1,0), (i-1,0)(i,j),
(i0) (i0), (i0)(i-1,j), (i-1,j)(i0), (i-1,j)(i-1,j), (ij)(i-1,0),(ij)(ij), - 1's
at (i-1,0)(i0), (i-1,0)(i-1,j), (i0)(i-1,0), (i0)(ij), (i-1,j)(i-1,0), (i-1,j)(ij),
(ij)(i0), (ij)(i-1,j), and O0's everywhere else. It is easily verified that

By M 5 g ny

M= I L X Wye Ag. o Since u?.'s are nonnegative numbers, the proof
: . i3 ij ij
j=1 i=1 k=1

will be complete if we show that each Azj is nonnegative definite. Agj

and Agj are obviously nonnegative definite. The highest order nontrivial
principal minor of Aij is a third order determinant with two identical rows,

all the second order principal minors of this determinant vanish; and the

main diagonal has 1's on it. Hence A;j is also nonnegative definite.
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is a

Hence,

Finally, the highest order nontrivial pPrincipal minor of A:j(Afj)
The second

fourth order determinant which has two pairs of identical rows.

itself and all its principal minors of order three vanish.

s @

order principal minors of this determinant all vanish, and the entries on
ij

the main diagonal are all
Theorem 2 implies that the likelihood L (3.1) is convex in the F

Is.
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